Received: December 7, 1988; accepted: February 28, 1989

AN IMPROVED CYCLISATION PROTOCOL FOR THE SYNTHESIS OF $\delta_{,\delta}$ -DIFLUORO- δ -LACTONES.

D. A. KENDRICK* and M. KOLB**

Merrell Dow Research Institute, 16 Rue d'Ankara, 67084 Strasbourg Cedex (France)

SUMMARY

An improved procedure for the synthesis of δ,δ -difluoro- δ -lactones from 5,5-difluoro-4-pentenoic acids is described. The method is illustrated for 2-benzyl-5,5-difluoro-4-pentenoic acid (2), which upon treatment with first mercury(II)acetate and then tri-n-butyltin hydride affords α -benzyl δ,δ -difluoro- δ -lactone (5).

INTRODUCTION

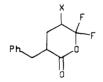
Morikawa <u>et al.</u> have reported the synthesis of 3,3-difluoro-isochroman-1-on via an iodolactonisation protocol, starting from methyl difluorovinyl benzoate 1 [1]. In the context of our work on enzyme inhibitors, we were interested in the

*Present address: Ferring Research Institute, Chilworth Research Centre, Southampton SO1 7NP, UK.

^{**}Author to whom correspondence should be addressed.

synthesis of lactones with fluorine substituents next to the ring oxygen functionality in general.

Recently we have described a new and short route to 5,5-difluoro-4pentenoic acids, such as compound 2 [2], suitable starting materials for the above purpose. In our hands, however, the synthesis of the δ,δ -difluoro- δ lactones, e.g. 5, from the corresponding fluorinated pentenoic acid esters via the above described iodolactonisation protocol [1] generated a considerable quantity of dark tar, from which the lactones could be isolated only by tedious chromatography. In addition, the intermediate iodolactones 3 were not very stable; even the purified material darkened within a few hours.


SYNTHESIS

Our investigation implied the use of 5,5-difluoro-4-pentenoic acids, in particular 2-benzyl-5,5-difluoro-4-pentenoic acid 2 as starting material and focused on the inspection of the utility of other electrophiles in this cyclisation step. As a first approach, reagents which would give a more stable intermediate cyclized product were sought.

Initially we attempted to cyclize model compound 1 with (tosyloxy)iodosobenzene [3]. Some evidence for cyclization was observed (¹⁹F NMR) but results were not very encouraging in terms of yield. Also protolactonisation was possible, but again only in low yield.

2

1

X = I3 4 X = HqOAc5 X =

We then turned to mercurilactonisation [4]. The difluorovinyl acid 2 was treated with mercury (II) acetate, and the progress of the reaction was monitored by ¹⁹F NMR. When iodine was added to trap the organo-mercurial 4 [5]. only a 1:2 mixture of the iodolactone 3 [¹H NMR (CDCl₃) δ 7.3 (m, 5H, Ph); 4.25 (structured m, 1H, CH-I); 3.4 ("d", 1H, J= 9Hz, Ph-CHH_A); 2.9 (m, 2H, Ph-CHH_B-CH); 2.3 (m, 2H, CH₂). ¹⁹F NMR (CDCl₃, C₆F₆) Θ 96 (dd, J= 14, 4Hz, CFF_A); 95 (dd, J= 7, 3Hz, CFF_B)] and the mercurilactone 4 was isolated. However, treatment of the crude mercurilactone with tri-n-butyltin hydride [6] cleanly removed the mercury from the intermediate lactone 4 and afforded the desired target structure 5 in a satisfying 50% overall yield, after chromatography.

The total process for the synthesis of $\delta_i \delta^2$ -difluoro- δ_i -lactones is then reduced to a simple one-pot reaction, which is complete in short time and requires no heating and no aqueous work up of the water-sensitive product material. Thus, this improved cyclization procedure of 5,5-difluoro-4-pentenoic acids together with their synthesis, reported recently by us [2], allows to obtain these fluorinated lactones with a broad substitution pattern in a straightforward reaction sequence.

EXPERIMENTAL

NMR: Varian EM-390 or Bruker AM 360 spectrometer. ¹H and ¹³C chemical shifts are given in ppm relative to internal Me_4Si (δ); ¹⁹F NMR shifts in ppm relative to internal C_6F_6 [Θ =0; δ (CFCl₃)= -163ppm]. IR: Perkin-Elmer IR-577 or IR-277 spectrometer. Solvents and reagents were dried prior to use when deemed necessary. For a detailed description of the experimental techniques refer to the Experimental Section of our earlier work [7]. Chromatography refers to the flash chromatography technique [8] on silica gel.

<u>a-Benzyl $\delta_1\delta_2$ -difluoro- δ_2 -lactone (5). A mixture of 2-benzyl 5,5-difluoro-4-pentenoic acid (2, 0.46g, 2.17mmol), obtained from *t*-butyl 2-benzyl-5,5-difluoro-4-pentenoate [2] on treatment with trifluoroacetic acid at r. t. for 14h, and $Hg(OAc)_2$ (0.69g, 2.1mmol) in acetonitrile (5mL) is stirred for <u>ca.</u> 45 min, until</u>

it becomes homogeneous. ¹⁹F NMR indicates the complete consumption of starting material [2: ¹⁹F NMR (CDCl₃, C₆F₆) Θ 75 (broad d, J= 44Hz, CFF_A); 73 (ddt, J= 44, 24, 3Hz, CFF_B), 4: ¹⁹F NMR (CDCl₃, C₆F₆) Θ 113 (dd, J= 153, 31Hz, CFF_A); 105 (dt, J= 153, 3Hz, CFF_B)]. n-BuSnH (1.89g, 1.75mL, 6.51mmol) is added and stirring is continued for a further 10 min. The mixture is diluted with Et₂O, the precipitate is removed by filtration through celite and washed with Et₂O. The filtrate is concentrated to give the crude δ , δ -difluoro- δ -lactone product 5, a new compound which is purified by flash chromatography (eluant: Et₂O / hexane, 1:4).

¹H NMR (CDCl₃, 360 MHz) δ 7.3 and 7.2 (2 struct'd m, 5H, 3:2, Ph); 3.47 (struct'd m, 1H, Ph-CHH_A); 2.85 (struct'd m, 1H, CH); 2.80 (struct'd m, 1H, Ph-CHH_B); 2.35 (struct'd m, 1H, CF₂-CHH_A); 2.1 (struct'd m, 1H, CF₂-CHH_B); 1.9 (struct'd m, 1H, CHH_A); 1.7 (struct'd m, 1H, CHH_B). ¹³C NMR (CDCl₃, 90.5 MHz) δ 168 (CO), 138, 129, 128.5, 127.5 (Ph), 124.5 (t, J_{CF}= 249Hz, CF₂), 42 (CH), 38.5 (Ph-CH₂), 30 (t, J_{CF}= 28Hz, C-CF₂), 21 (CH₂). ¹⁹F NMR (CDCl₃, C₆F₆) Θ 98 (narrow ABX₂). IR (CHCl₃) 2920, 1780, 1440, 1380, 1265, 1080 cm⁻¹.

REFERENCES

- 1 T. Morikawa, I. Kumadaki, and M. Shiro, Chem. Pharm. Bull., 33 (1985) 5144
- 2 D. A. Kendrick and M. Kolb, J. Fluorine Chem., 45 (1989) 265.
- 3 M. Shah, M. J. Taschner, G. F. Koser, and N. L. Rach, *Tetrahedron Lett.*, 27 (1986) 4557.
- K.-P. Zeller and H. Straub, in 'Houben-Weyl: Methoden der Organischen Chemie', Ed. E. Müller, Georg Thieme Verlag, Stuttgart, West Germany, (1974) Vol. 13, Part 2b, p 168
- 5 idem. [4] p. 332.
- 6 A. J. Bloodworth and J. L. Courtneige, Chem. Commun., (1981) 1117.
- M. Kolb, C. Danzin, J. Barth, and N. Claverie, J. Med. Chem., <u>25</u> (1982) 550;
 M. Kolb, J. Barth, J.-G. Heydt, and M. Jung, J. Med. Chem., <u>30</u> (1987) 267.
- 8 W. C. Still, M. Kahn, and A. Mitra, J. Org. Chem., 43 (1978) 2923.